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Self-Adjoint Variational Formulation of Problems
Having Non-Self-Adjoint Operators

GARBO JENG AND ALVIN WEXLER, ~EMIIER, IEEE

Abstract—A systematic approach is given for deriving a vari-
ational formulation, previously stated by Stakgold, of nou-self-
adjoint operators from the standard quadratic functional for self-
adjoint operators given by Mikhlin. If the same set of basis functions
is used to approximate the solution of the operator equation and its

adjoint eqnation, the resulting system of equations is identical to that

derived from the Galerkin method. By using two differing sets of basis
functions, one obtains a system of equations which corresponds to

that derived from the moment method in general. As a particular and
important example, the integral equation for the interface problem

between differing media is considered. Compared to the method used

by McDonald, Friedman, and Wexler, the present formulation
involves no danger of finding a false solution, results in a simpler set
of equations, requires fewer integrations, and is seen—iu the case of
integral equations—to correspond to the Galerkin method. It is also

shown that for wave propagation through a lossy medium, which
involves the solution of the non-self-adjoint complex Helmholtz

equation, the resulting system of linear equations takes the same

fawm as those for the real self-adjoint case but for the addition of
complex arithmetic.

I. INTRODUCTION

1[N A RECENT paper [1] by McDonald, Friedman, and

Wexler, the integral equation formulation of electrostatic

field problems was solved using a variational method, The

interface problem resulted in integral equations whose

kernels are nonsymmetric, Hence, the quadratic functional

[2, pp. 74-95]

F = (Krs,c) – (o,g) – (g,c} (1)

whose stationary point corresponds to the solution of

Kn=cj (2)

provided K is self-adjoint (that is, real symmetric kernel for

t“he case of an integral operator), is not directly applicable.

In order to apply (1) to the non-self-adjoint interface

problem, McDonald et al. [1] proceeded by defining a

modified self-adjoint operator K’ using the following

relation

K’ff = {Ko,G> (3)

where G is the free space Green’s function of the problem

concerned. It was argued that K’a = O implies Ko = O (for

the homogeneous case of g = O), and hence, a solution of

K’cr = O implies a solution of Ka = O. However, Kcr = Ois a
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sufficient but not a necessary condition for K’n to vanish.

For example, it is obvious that certain choices of the

approximating functiOn to o cause the inner product

(Ka,G) to vanish due to orthogonality of Kcr and G. When

this is the case, a solution to K’o = O need not form an

approximate solution to Ka = 0.

Here an adjoint formulation, derived from the quadratic

functional for self-adjoint operators, is used so that the

danger of finding a false solution does not exist. Addi-

tionally, the extra surface integration, as introduced from

the definition of a new operator using relation (3), is not

required.

II. EXTENSION OF THE QUADRATIC FUNCTIONAL FOR

NON-SELF-ADJOINT OPERATORS

Consider the inhomogeneous equation

Ku= g. (4)

Assume that there is an adjoint operator K“ to the operator

K with the property

<Kcr,T) = (~,KaT} (5)

where the pair of brackets is defined by

(~.u) = [ UL’* d~ (6)

and the superscript * denotes the complex-conjugate. An

operator K is said to be self-adjoint if

(Kcr,~) = (cr,KT). (7)

Equation (7) follows directly from (5) if K is self-adjoint, that

is, if K = K“.

According to Mikhlin [2, pp. 74-95], if K is self-adjoint,

the quadratic functional

F = (Ka,cr) – (a,g) – (g,o)

(for complex a and/or g) (8)

or

F = (Ko,cr) – 2(~,g) (for the real case) (9)

is stationary at a solution of

KG = g. (10)

To show this. let 00 be a stationary point of the functional
(8) and consider a small perturbation sq from the stationary

point, that is,

F(e) = F((rO + ~q) (11)
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where q is an arbitrary function in the domain of definition

of the operator K and &is a real scalar multiplier. Expanding

(11) using (8), we have

F(e) = <Kao,oo) + &(Kq,oO) + E(KrTO>q) + E2(Kq,q)

— &(?f,g) – &(g,q) – (CTo,g) – (g,ao).

The first derivative of the functional (8) at & = Ois given by

dF

dE ,=~
= (Kq,CTO) + (KaO,q) - (q,g) - (g,q) (12)

which must vanish at the stationary point. Hence,

<Kwo) + <KCJO,T) – (w) – (w) =0. (13)

The self-adjointness of K allows (13) to be written as

(q, Kao – g) + <Kao – g, q) = O. (14)

Since the mapping defined by (6) satisfies the following

properties

1) (U,v) = (V,U)*

2) (alul + a2u2, 0) = al(ul,u) + a2(u2,v)

3) (U,u) >0

4) if <u,u) = O, then u = O (15)

of an inner product, ( 14) yields, for arbitrary q, Kao – g = O.

Careful study of the steps leading to this result reveals that

the requirement of an inner product is unnecessarily restric;

tive insofar as the proof of stationarity is concerned. To

prove stationarity, without requiring a minimum of the

functional, the following conditions are sufficient:

1) The operator K satisfies the relation (7).

2) <alul + a2u2, v) = al(ul,v) + a2<u2,v)

3) <u, alvl + a2v2) = a~<u,vl) + a~(u,v2) (16)

4) if <u,o) + <v,u) = O

for arbitrary U, then u = O.

Obviously, an inner product satisfies the above properties

2)-4) and is a more restrictive mapping. We shall now derive

a functional for non-self-adjoint operators based on the

functional (8).

First, forming a matrix operator

. [K 0]

The domain and the range of the operator K are formed by

the elements

respectively, where ~ and h are in

respectively, of the operator K“.

If

the domain and the range,

[1

VI
z=

V2

are two elements in the domain of definition of %, we define

(ii,$) = j“ Wii “ fi” df2 (17)

where W is a weighting factor defined by

[1W=oo

10’

For example,

.(= Kulu: dQ

= (Kul,u,). (18)

Using (17), it is easily shown that

(X;,c) = (i.l,xc).

Thus (7) is satisfied. Moreover, the mapping defined

by (17) satisfies the properties 2)4) of (16) as required for

stationarit y. However, as is obvious from (18), even if

% = 1, an identity operator, one cannot conclude that

(Iii,ti) >0. The definition given by (17) is thus not applic-

able for cases where positive definiteness is to be proven.

However, it is sufficient for the purpose of proving station-

arity. Thus the functional

F = (%%,5) – (I?,~) – Qj,ti) (19)

is stationary at a solution of

%6 = j.

Using (17), the functional (19) is

F = (Ka,r) – <g,z) – (a,h). (20)

The above functional, which is here derived in a direct

fashion, is identical to that stated in [3, p. 357]. The

stationary points of F, with respect to ~ and a, give the

solution to

Ka=g

and

K“T = h

respectively. Note that by taking the approximating func-

tions a and ~ to be

a = C7Ta= a~~ (21)

and

x = rT~ = aT~ (22)

where a is a vector of interpolating functions and a and ~

contain the variational parameters, the functional given by

(20) produces

F = aT(Ka,ci~)t – (g,a~)t – aT(a,h). (23)
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Upon taking the variation with respect to q (23 ) results in a

system of equations

(Ka,a’)tr = (g,a) (24)

which is algorithmically identical to that obtained from

Galerkin’s method. It may also be noted that by taking the

set of approximating functions to be

and

. = .’p = p’. (26)

the system of equations (24) is

(J?,KaT)~ = (/?,g) (27)

which is the system of equations resulting from the moment

method in general.

III. APPLICATION TO THE INTERFACE PROBLEM

From the condition of continuity of flux at the interface, it

has been shown [1] that the equation governing the charge at

the interface between dielectrics having relative permittivi-

ties c1 and ez, respectively, is given by

- CT(s)+ ~
2&(J&~

( o(s’):(sI s’) h’ = O (28)
‘s

where a(s) is an equivalent single-layer charge distribution.

This is a Fredhohn integral equation of the second kind.

From the definition of the adjoint operator given by (5), the

adjoint of (28) is obtained by replacing the Kernel (i?G/&z)

(s Is’) by (dG/&’)(s’ Is). In general, the adjoint operator of a

complex integral operator is one with the kernel replaced by

its complex-conjugate transpose. For a general curve, it is

easily shown that

:(sls’)+: (s+’). (29)

Hence, the integral operator of (28) is not self-adjoint. Using

(20), the functional for the operator equation (28) is

1
~: (S I S’) ds’ th. (30)

As an example, the 3-D microstrip problem presented in

[1] is solved by the Ritz method using functional (30). A

T-shaped thin conductor at unit potential is placed on top of

a dielectric slab, with relative permittivit y c,, lying on an

infinite ground conductor in the z = Oplane. On the conduc-

tor plate SP, the potential@ is constant, say ~(s)= g. At the

dielectric interface SI, (28) holds. Therefore, we have

[ G(sIs)u(s) ds’ = g, s G Sp (31)
‘s

where

s=s~vsp

1
ws’)=qs_s,l

and

K(s IS’)= ~ (S 1S’).

For the purpose of comparing results with those reported in

[1], the unknown functions o and ~ are approximated by

constants over square equal-area subregions. An improved

technique, using triangular finite elements with higher order

approximations and applicable to problems having arbi-

trary geometries in space, has recently been developed for

the integral operators considered. This is discussed else-

where [~, [7]. -

Applying (23) and the Ritz proceclure, the system of

equations for solving a is

&,+l
—Gk Ak + ti ~ ~jj j K(sls’)ds’ds=O,

2&~ &~ j= 1 A~ Aj

k=nzi-l, ”,n (34)

where Ak denotes the kth subregion, m = the number of

subregions on the plate, and n = total number of subregions

(n> m). Note that equations (33) are identical to equations

(55a) of [1] neglecting for the moment the term involving the

singular function~,, as this is not our concern here. This is to

be expected as the operator is self-adjoint here and the

functional (20) reduces identically to functional (8). Equa-

tion (34), however, takes a much simpler form than the

corresponding equation (55c) in [1]. It should be noted that

the above equations could have been obtained from Galer-

kin’s methods directly, using unit pulse weighting functions.

It is also to be remarked that although the physical energy is

minimized, for this case, one is unfortunately unable to show

that the functional is minimized due tcl the introduction of

the augmented operator % as mentioned in Section II.

Equations (33) and (34) are solved simultaneously for the

unknown charge distribution a on the conductor and the

dielectric surfaces. Once ~ is known, the potential ~, at any

point in space, can be evaluated from the integral

()(S) = : jsG(s IS’)fJ(S’:)ds’.

IV. APPLICATION TO WAVE PROPAGATION

IN A LossY MEDIUM

(35)

For time-harmonic wave propagation problem, the

8,+1
‘re; 1 j’ K(sls’)o(s’) ds’ = O, S G S1 (32) ‘elmhO1tz ‘quat’on _(v, + ~,)o =f—a(s) + —

2&. s (36)
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holds. Equation (36) in operator notation is

Lb =f (37)

where

L=– V2–k2

and

li2 = co2p&. (38)

If the dielectric medium is Iossy, the permittivity & is a

complex quantity. In such cases, from (6) and (7), it can be

shown that the operator L is non-self-adjoint.

From the functional (20) for non-self-adjoint operators,

we have

F = (UW”) – O@’? – ($>,fa). (39)

Assuming homogeneous Neumann or Dirichlet boundary

conditions for @ and ~, the explicit form of the functional

(39) is

F= ““V& V@W- ““k2r@j”*d Q
. . . .

Letting

($= ~’a = .’~

and

da= @ra = ~’~ (41)

and substituting into (40), we have

F=r#T’” Vu ~ VaT dflv – 4T “” k2aaT df2r#f’*
. . . .

– “ “ a’f dQ@* – “ “fa*aT dQ@ (42)
. . . .

or, replacing the integrations by matrices,

F = $TR@* _ bT@* _ ba’~ (43)

where

R = S – k2T = II (Va VaT - k2aaT) dfl (44) ‘1]
. .

b= ‘“afd!2
. .

and [4]

b“ = [ff”*a dfl (w [q. .

Taking derivatives with respect to each of the variational

parameters @’ in turn, we get
[6]

Rr# = b. (54)

Note that for the non-self-adjoint complex operator case

shown here, the system of equations takes the same form as
[7]

those for the real self-adjoint case. The generation of the

matrix R, can, therefore, be obtained as before, except with

the use of complex arithmetic.

We have assumed homogeneous Neumann or Dirichlet

boundary conditions in this study. The extension to the

mixed and inhomogeneous boundary conditions is straight-

forward and follows the approach outlined by Mikhlin [2,

pp. 116-121]. It is a fairly straightforward matter to extend

the functional to continuously inhomogeneous and ortho-

tropic media as outlined in [4] or, preferably, [5], Again, it is

only required that complex arithmetic be employed. The

formulation is otherwise unchanged.

V. CONCLUSION

A generalized functional was derived from the quadratic

functional for self-adjoint operators and was shown to be

applicable to integral equations with nonsymmetric kernels

and for non-s elf-adjoint partial differential operators.

For the interface problem, using the integral equation

formulation, comparing (34) with (55c) of [1], it is apparent

that with the present formulation the amount of computa-

tion involved is reduced. Moreover, as pointed out in the

Introduction, the solution process is not based upon the

argument that (Ko,G) = O implies Ku = O.

For the non-self-adjoint Helmholtz problem, it is seen

that the discretization is obtained in the same fashion as

required for the real self-adjoint case except for the use of

complex arithmetic.

At present, finite-element algorithms for the solution of

Fredholm integral equations of the first and second kind are

being developed (e.g., [6] and [7]). The algorithms permit

problems involving arbitrary curved surfaces in space to be

handled by an extension of the isoparametric finite-element

approach.
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