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Self-Adjoint Variational Formulation of Problems
Having Non-Self-Adjoint Operators

GARBO JENG anD ALVIN WEXLER, MEMBER, IEEE

Abstract—A systematic approach is given for deriving a vari-
ational formulation, previously stated by Stakgold, of non-self-
adjoint operators from the standard quadratic functional for self-
adjoint operators given by Mikhlin. If the same set of basis functions
is used to approximate the solution of the operater equation and its
adjoint equation, the resulting system of equations is identical to that
derived from the Galerkin method. By using two differing sets of basis
functions, one obtains a system of equations which corresponds to
that derived from the moment method in general. As a particular and
important example, the integral equation for the interface problem
between differing media is considered. Compared to the method used
by McDonald, Friedman, and Wexler, the present formulation
involves no danger of finding a false solution, results in a simpler set
of equations, requires fewer integrations, and is seen—in the case of
integral equations—to correspond to the Galerkin method. It is also
shown that for wave propagation through a lossy medium, which
involves the solution of the non-self-adjoint complex Helmholtz
equation, the resulting system of linear equations takes the same
form as those for the real seif-adjoint case but for the addition of
complex arithmetic,

I. INTRODUCTION

N A RECENT paper [1] by McDonald, Friedman, and
][Wexler, the integral equation formulation of electrostatic
field problems was solved using a variational method. The
interface problem resulted in integral equations whose
kernels are nonsymmetric. Hence, the quadratic functional

2, pp. 74-95]

F=(Koo)—<og)—<{g.0)

whose stationary point corresponds to the solution of

(1)

Ko=y

2)

provided K is self-adjoint (that is, real symmetric kernel for
the case of an integral operator), is not directly applicable.

In order to apply (1) to the non-self-adjoint interface
problem, McDonald et al. [1] proceeded by defining a
modified self-adjoint operator K’ using the following
relation

K'oc =<{Ko,G>

(3)
where G is the free space Green’s function of the problem
concerned. It was argued that K'o = 0 implies Ko = 0 (for
the homogeneous case of g = 0), and hence, a solution of
K'c = 0 implies a solution of Ko = 0. However, Ko = Oisa
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sufficient but not a necessary condition for K'c to vanish.
For example, it is obvious that certain choices of the
approximating function to ¢ cause the inner product
{Ko,G) to vanish due to orthogonality of Ko and G. When
this is the case, a solution to K'o = 0 need not form an
approximate solution to Ko = 0.

Here an adjoint formulation, derived from the quadratic
functional for self-adjoint operators, is used so that the
danger of finding a false solution does not exist. Addi-
tionally, the extra surface integration, as introduced from
the definition of a new operator using relation (3), is not
required.

[I. EXTENSION OF THE QUADRATIC FUNCTIONAL FOR
NON-SELF-ADJOINT OPERATORS

Consider the inhomogeneous equation

Ko =g. 4)
Assume that there is an adjoint operator K* to the operator
K with the property

{Ko,t) = {0,K>
where the pair of brackets is defined by

(5)

{uw) = ' ur* dQ (6)

and the superscript * denotes the complex-conjugate. An
operator K is said to be self-adjoint if

(Ka.1> = {o.K1). (7)

Equation (7)follows directly from (3)if K is self-adjoint, that
is, if K = K*

According to Mikhlin [2, pp. 74-95], if K is self-adjoint,
the quadratic functional

F=<(Kaog) —<ag)—<g.0)
(for complex o and/or g) (8)
or
F=<{Koo)— 2{og>

is stationary at a solution of

(for the real case)  (9)
(10)

To show this. let g, be a stationary point of the functional
(8) and consider a small perturbation ex from the stationary
point, that is,

Ko=g.

F(e) = Floo + en) (11)

0018-9480/78/0200-0091$00.75 © 1978 IEEE



92 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-26, NO. 2, FEBRUARY 1978

where 7 is an arbitrary function in the domain of definition
of the operator K and ¢ is a real scalar multiplier. Expanding
(11) using (8), we have

F(S) = <KO-09O-O> + 8<K”900> + 8<K0-0711> + £2<K”711>
— &n.g> — &g — 00,90 — 4,00
The first derivative of the functional (8) at ¢ = Q1is given by

dF
.= CKn,00) + (Kaopd — <n.g> — <gn> (12)

which must vanish at the stationary point. Hence,

{Knaoy + Kooy — {ng> — {gn>=0.  (13)
The self-adjointness of K allows (13) to be written as
n, Koo — g) + (Koo — g, 1> = 0. (14)

Since the mapping defined by (6) satisfies the following
properties

1) {upd = {oud*

2) Laguy + ayuy, v) = a;{ug,v) + a{uy,v)

3) {uuy =0

4) if uu>=0, thenu=0 (15)

of an inner product, (14) yields, for arbitrary n, Ko, — g = 0.
Careful study of the steps leading to this resuit reveals that
the requirement of an inner product is unnecessarily restric-
tive insofar as the proof of stationarity is concerned. To
prove stationarity, without requiring a minimum of the
functional, the following conditions are sufficient:

1) The operator K satisfies the relation (7).
2) <ayuy + ayuy, v) = a;{uw) + a{uy 0>
3) Lu, a0y 4+ ay0,) = aflup,> + af{up,)
4) if {upd+{oud=0

for arbitrary v, then u = 0.

(16)

Obviously, an inner product satisfies the above properties
2)-4) and is a more restrictive mapping. We shall now derive
a functional for non-self-adjoint operators based on the
functional (8).

First, forming a matrix operator
K 0 }

J{:[0 K*

The domain and the range of the operator #~ are formed by

the elements
o . |g
T} and g= [h}

respectively, where 7 and h are in the domain and the range,
respectively, of the operator K*
If

o=

are two elements in the domain of definition of ", we define

Gy = | Wi - 5% dQ (17)
where W is a weighting factor defined by
00
W= [ \ 0}.
For example,
- 10 OLIK O jluy | fugl|*
— h Q
AR ‘ [1 0] [0 Ka} [“2] [uz} ‘
= f Ku,uf dQ
= <Ku1,u2>. (18)

Using (17), it is easily shown that
AUy = {u,AD).

Thus (7) is satisfied. Moreover, the mapping defined
by (17) satisfies the properties 2)-4) of (16) as required for
stationarity. However, as is obvious from (18), even if
A =1, an identity operator, one cannot conclude that
{Ifi,z) = 0. The definition given by (17) is thus not applic-
able for cases where positive definiteness is to be proven.
However, it is sufficient for the purpose of proving station-
arity. Thus the functional

F=L{Xd,6)—<a,g)—<4.5> (19)
is stationary at a solution of
A6 =g.
Using (17), the functional (19) is
F =<{Koy)— {(g,t> — {a,h). (20)

The above functional, which is here derived in a direct
fashion, is identical to that stated in [3, p. 357]. The
stationary points of F, with respect to 7 and ¢, give the
solution to

Ko=yg
and
Kér=h

respectively. Note that by taking the approximating func-
tions ¢ and 1 to be

(21)
and
Tz (22)

where « is a vector of interpolating functions and ¢ and =
contain the variational parameters, the functional given by
(20) produces

F = 6¢"(Kaa")t — {gaTyt — 6 ah). (23)
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Upon taking the variation with respect to 7, (23) results in a
system of equations

(Kap'Ho = {ga) (24)

which is algorithmically identical to that obtained from
Galerkin’s method. It may also be noted that by taking the
set of approximating functions to be

c=0ca=a'g (25)
and
t=1Tp=p"r (26)
the system of equations (24) is
{B.Ka"yo = <{Bg> (27)

which is the system of equations resulting from the moment
method in general.

ITI. APPLICATION TO THE INTERFACE PROBLEM

From the condition of continuity of flux at the interface, it
has been shown [1] that the equation governing the charge at
the interface between dielectrics having relative permittivi-
ties ¢, and ¢,, respectively, is given by

()5 s15) ds =0 (8)

where a(s) is an equivalent single-layer charge distribution.
This is a Fredholm integral equation of the second kind.
From the definition of the adjoint operator given by (5), the
adjoint of (28) is obtained by replacing the Kernel (6G/on)
(s|s') by (6G/on’)(s’|s). In general, the adjoint operator of a
complex integral operator is one with the kernel replaced by
its complex-conjugate transpose. For a general curve, it is
casily shown that

oG
an( |S)# 6n/(s/|s)‘

Hence, the integral operator of (28)is not self-adjoint. Using
(20), the functional for the operator equation (28) is

g+ &
2646,

€1 — &

€062 s

(29)

& + & &1~ & ,
- ‘ 26082 2e085 [ a(s)
aG ’ '
%(s|s)ds ]ds. (30)

As an example, the 3-D microstrip problem presented in
[1] is solved by the Ritz method using functional (30). A
T-shaped thin conductor at unit potentialis placed on top of
a dielectric slab, with relative permittivity ¢,, lying on an
infinite ground conductorin the z = 0 plane. On the conduc-
tor plate Sp, the potential ¢ is constant, say ¢(s) = g. At the
dielectric interface Sy, (28) holds. Therefore, we have

[ G(s|s')o(s') ds' = g.
°S

SESP

(31)

g +1
2g,

0,

ols) + ! J KGs)ots) a5 ses; (32)

93

where
S = SI o SP

1

C6Is) =gy =57

and

IS)——

For the purpose of comparing results with those reported in
[1], the unknown functions ¢ and 7 are approximated by
constants over square equal-area subregions. An improved
technique, using triangular finite elements with higher order
approximations and applicable to problems having arbi-
trary geometries in space, has recently been developed for
the integral operators considered. This is discussed else-
where [6], [7]

Applying (23) and the Ritz procedure, the system of
equations for solving o is

(s|s)

(s]s) ds" ds — [ gds=0,
ap

=1 Ay A
k=12 m (33)
g + 1 1 & ’
LT A+ g; K{s|s)ds' ds =0,
280 k =k jgl }J‘Ak JA,' ( I )
k=m+1,---,n (34)

where A, denotes the kth subregion, m = the number of
subregions on the plate, and n = total number of subregions
(n > m). Note that equations (33) are identical to equations
(55a) of [1] neglecting for the moment the term involving the
singular function f;, as this is not our concern here. This is to
be expected as the operator is self-adjoint here and the
functional (20) reduces identically to functional (8). Equa-
tion (34), however, takes a much simpler form than the
corresponding equation (55c)in [1]. It should be noted that
the above equations could have been obtained from Galer-
kin’s methods directly, using unit pulse weighting functions.
It is also to be remarked that although the physical energy is
minimized, for this case, one is unfortunately unable to show
that the functional is minimized due to the introduction of
the augmented operator ¢ as mentioned in Section II.

Equations (33) and (34) are solved simultaneously for the
unknown charge distribution ¢ on the conductor and the
dielectric surfaces. Once o is known, the potential ¢, at any
point in space, can be evaluated from the integral

#6)=~ | 6

&o

G(s|s')o(s") ds'. (35)

1V. APPLICATION TO WAVE PROPAGATION
IN A Lossy MEDIUM

For time-harmonic wave propagation problem, the
Helmbholtz equation

(V2 + k)b =f (36)
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holds. Equation (36) in operator notation is

Lp=f (37)
where
L=—-V*—[?
and
k* = o*pe. (38)

If the dielectric medium is lossy, the permittivity ¢ is a
complex quantity. In such cases, from (6} and (7), it can be
shown that the operator L is non-self-adjoint.

From the functional (20) for non-self-adjoint operators,
we have

F={Lp.p*> — {fid*> — (.. (39)

Assuming homogeneous Neumann or Dirichlet boundary
conditions for ¢ and ¢* the explicit form of the functional
(39) is

F= H Vo - Voo dQ — H k2™ dQ

— || g1~ |[ ¢ d.  (40)
Letting
¢ =¢a=ao"d
and
¢° = ¢*'a=a’¢* (41)
and substituting into (40), we have
F=¢" || Va- Val d0¢™ — ¢" || Kaa” d2gp™
— [ a’faqge* — [[ f**a a2 (42)
or, replacing the integrations by matrices,
F=¢"R¢™ —b"¢™ — b"'¢ (43)
where
R=S~KT=|[(Va V'~ Kaa")dQ (44)
b= H of dQ 45)
and
b= | "fa*a doQ. (46)

Taking derivatives with respect to each of the variational
parameters ¢° in turn, we get

R =b. (54)

Note that for the non-self-adjoint complex operator case
shown here, the system of equations takes the same form as
those for the real self-adjoint case. The generation of the

matrix R, can, therefore, be obtained as before, except with
the use of complex arithmetic.

We have assumed homogeneous Neumann or Dirichlet
boundary conditions in this study. The extension to the
mixed and inhomogeneous boundary conditions is straight-
forward and follows the approach outlined by Mikhlin |2,
pp. 116-121]. It is a fairly straightforward matter to extend
the functional to continuously inhomogeneous and ortho-
tropic media as outlined in [4] or, preferably, [5]. Again, itis
only required that complex arithmetic be employed. The
formulation is otherwise unchanged.

V. CONCLUSION

A generalized functional was derived from the quadratic
functional for self-adjoint operators and was shown to be
applicable to integral equations with nonsymmetric kernels
and for non-self-adjoint partial differential operators.

For the interface problem, using the integral equation
formulation, comparing (34) with (55c) of [1], it is apparent
that with the present formulation the amount of computa-
tion involved i1s reduced. Moreover, as pointed out in the
Introduction, the solution process is not based upon the
argument that (Ko,G) = 0 implies Ko = 0.

For the non-self-adjoint Helmholtz problem, it is seen
that the discretization is obtained in the same fashion as
required for the real self-adjoint case except for the use of
complex arithmetic.

At present, finite-element algorithms for the solution of
Fredholm integral equations of the first and second kind are
being developed (e.g., [6] and [7]). The algorithms permit
problems involving arbitrary curved surfaces in space to be
handled by an extension of the isoparametric finite-element
approach.

ACKNOWLEDGMENT

The authors wish to acknowledge Prof. H. Lakser and
other colleagues at the University of Manitoba and one of
the reviewers for some very useful discussions and critical
comments. Dr. G. 1. Costache is gratefully acknowledged for
contributions that led to the results of Section IV.

REFERENCES

[1] B. H. McDonald, M. Friedman, and A. Wexler, “Variational solution
of integral equations,” IEEE Trans. Microwave Theory Tech., vol.
MTT-22, pp. 237-238, Mar. 1974.

[2] S. G. Mikhlin, Variational Methods in Mathematical Physics. New
York: Macmillan, 1974.

{3] L Stakgold, Boundary Value Problems of Mathematical Physics, vol. IL.
New York. Macmillan, 1968.

{4] A Wexler, “Finite-clement analysis of an inhomogeneous, anisotropic,
reluctance machine,” IEEE Trans. Power App. Syst., vol. PAS-92, pp.
145-149, Jan./Feb. 1973.

[5] ~—— “Isoparametric finite elements for continuously inhomogeneous
and orthotropic media.” in Proc Int. Conf. Finite Elements for Water
Resources, (July 12-16, 1976), W. G. Gray, G. F. Pinder, and C. A.
Brebbia, Eds. London: Pentech Press, 1977, pp. 2.3-2.24.

[6] G. Jeng and A. Wexler, “Finite-clement solution of boundary integral
equations.” in Proc. Int. Symp. Large Engineering Systems. (August
9-12, 1976), A. Wexler, Ed. New York: Pergamon Press, 1977, pp.
112-121.

[71 — “Isoparametric, finite-element, variational solution of integral
equations for three-dimensional fields,” Int. J. Num. Meth. Eng., vol.
11, pp. 1455-1471, 1977.



